Pharmacists in Functional Medicine

Pharmacists in Functional Medicine

Dr. Izabella Wentz writes:

I often have people reaching out to me, asking for recommendations for someone who does what I do for the thyroid, but for another condition. So in honor of Pharmacists Month, I thought I would put together a list of colleagues — pharmacists who specialize in a functional medicine approach to various conditions. I hope this will be a great resource for you, or someone you love.

In a broken healthcare system that is centered around disease, functional medicine seeks to address the root cause of illness and restore health to the patient. It is often defined as healing-oriented medicine that takes into account the whole person, including all aspects of their lifestyle. The field is growing rapidly, with approximately 100,000 functional medicine practitioners in current practice.

Pharmacists who practice functional medicine combine their knowledge of health conditions with a therapeutic mindset and a root cause approach that allows them to look at a patient’s health history, lifestyle, and triggers and offer solutions from a holistic point of view. While most people think pharmacists just want to “drug” their patients (and perhaps some do!), I personally studied lifestyle medicine in pharmacy school. We would often recommend lifestyle interventions for mild cases of many conditions, and reserve medications for the times when they were really needed.

Additionally, we were taught to always recommend lifestyle changes in conjunction with medication. It was my training as a pharmacist that led me to question the standard medical paradigm that only recommended thyroid hormones for Hashimoto’s and hypothyroidism and didn’t have any consideration for lifestyle interventions! Thanks to this very training, I began to research lifestyle changes for thyroid conditions and started writing Hashimoto’s Thyroiditis: Lifestyle Interventions for Finding and Treating the Root Cause.

Everyone’s root causes of Hashimoto’s will be different, as we all have our own unique genetics and lifestyles. My mission as your Thyroid Pharmacist has been to help you uncover your own root causes and assist you on your healing journey. I am excited that there are many others in my field who are using their own knowledge and specialties to help people find healing from a variety of different conditions.

Pharmacists are trained in optimizing treatment options, and I love how many are looking past medications as treatment modalities. I’d like to take this opportunity to highlight a few of the pharmacists with unique specialties whom I respect and recommend. My hope is that those who really need this information will find a helping hand on their journey toward healing.

How many push-ups can you do? Study finds men who can do 40 have lower risk of heart disease

Pushups

The number of push-ups a man can do may be a good indicator of his risk for heart disease, a new study found.

The study, conducted by researchers at the Harvard T.H. Chan School of Public Health, compared the heart health of male firefighters over a 10-year period. Those who could do more than 40 push-ups during a timed test at a preliminary examination were 96 percent less likely to have developed a cardiovascular problem compared to those who could do no more than 10 push-ups, according to the report published Friday in the medical journal JAMA Network Open.

Nearly half of U.S. adults deal with some form of cardiovascular disease as of 2016, according to the American Heart Association.The study’s authors believe push-ups may be an easy way to test men’s risk for heart disease.

https://www.usatoday.com/story/news/health/2019/02/17/study-men-push-ups-lower-risk-heart-disease/2899802002/

CDC officials admit trying to destroy documents

Shredding Testimony

Watch this news video and realise that this was several months BEFORE Dr William Thompson, the #CDCWhistleblower was outed. We were told that it was ridiculous to assert that the CDC would order documents to be destroyed or to change the outcome of anything they had done but here you see, they definitely had a history of doing just that.

MEDICAL HORROR: Genetic sequencing of common vaccine finds entire male human genome from aborted human baby… “a complete individual genome” with abnormal, modified genes… 560 genes linked to cancer

human-genome-sequencing-vaccines-mrc-5

Vaccines are routinely formulated with aborted human fetal cells known as MRC-5 and WI-38. The CDC openly lists some of the vaccines that use these “human diploid” cells, including Twinrix (Hep A / Hep B), ProQuad (MMRV) and Varivax (Varicella / chicken pox). FDA-published vaccine insert sheets such as this one for Varivax also openly admit to the use of aborted human fetal cell lines such as MRC-5:

https://www.naturalnews.com/2019-10-04-medical-horror-genetic-sequencing-vaccines-mrc-5-cancer-genes-modified.html

Today, we bring you another perspective on the latest drama from Washington, D.C.

Impeachment… or CIA coup?
By Dr. Ron Paul

Dr. Ron Paul is a former member of Congress and presidential candidate. While in Washington, D.C., he was one of the few voices advocating for limited government, individual liberty, and sound fiscal principles.

And in this essay, he asks whether the Deep State has a hand in the latest Trump impeachment theatrics…

You don’t need to be a supporter of President Trump to be concerned about the efforts to remove him from office. Last week, House Speaker Nancy Pelosi announced impeachment proceedings against the President over a phone call made to the President of Ukraine. According to the White House record of the call, the President asked his Ukrainian counterpart to look into whether there is any evidence of Ukrainian meddling in the 2016 election and then mentioned that a lot of people were talking about how former U.S. Vice President Joe Biden stopped the prosecution of his son who was under investigation for corruption in Ukraine.

Democrats, who spent more than two years convinced that “Russiagate” would enable them to remove Trump from office only to have their hopes dashed by the Mueller Report, now believe they have their smoking gun in this phone call.

It this about politics? Yes. But there may be more to it than that.

It may appear that the Democratic Party, furious over Hillary Clinton’s 2016 loss, is the driving force behind this ongoing attempt to remove Donald Trump from office, but at every turn we see the fingerprints of the CIA and its allies in the U.S. Deep State.

In August 2016, a former acting director of the CIA, Mike Morell, wrote an extraordinary article in the New York Times accusing Donald Trump of being an “agent of the Russian Federation.” Morell was clearly using his intelligence career as a way of bolstering his claim that Trump was a Russian spy – after all, the CIA should know such a thing! But the claim was a lie.

Former CIA Director John Brennan accused President Trump of “treason” and of “being in the pocket of Putin” for meeting with the Russian president in Helsinki and accepting his word that Russia did not meddle in the U.S. election. To this day, there has yet to be any evidence presented that the Russian government did interfere. Brennan openly called on “patriotic” Republicans to act against this “traitor.”

Brennan and his Deep State counterparts James Comey at the FBI and former Director of National Intelligence James Clapper launched an operation, using what we now know is the fake Steele dossier, to spy on the Trump presidential campaign and even attempt to entrap Trump campaign employees.

Notice a pattern here?

Now we hear that the latest trigger for impeachment is a CIA officer assigned to the White House who filed a “whistleblower” complaint against the president over something he heard from someone else that the president said in the Ukraine phone call.

Shockingly, according to multiple press reports the rules for CIA whistleblowing were recently changed, dropping the requirement that the whistleblower have direct, first-hand knowledge of the wrongdoing. Just before this complaint was filed, the rule-change allowed hearsay or second-hand information to be accepted. That seems strange.

As it turns out, the CIA “whistleblower” lurking around the White House got the important things wrong, as there was no quid pro quo discussed and there was no actual request to investigate Biden or his son.

The Democrats have suddenly come out in praise of whistleblowers – well not exactly. Pelosi still wants to prosecute actual whistleblower Ed Snowden. But she’s singing the praises of this fake CIA “whistleblower.”

Senate Minority Leader Chuck Schumer once warned Trump that if “you take on the intelligence community, they have six ways from Sunday at getting back at you.” It’s hard not to ask whether this is a genuine impeachment effort… or a CIA coup!

Homeless Woman Sings Opera In Los Angeles Subway – Inspirational Videos

Emily Zamourka

It was a breathtaking moment captured on camera when a police officer recorded this homeless woman singing in a Los Angeles subway.

52-year-old Emily Zamourka was stepping off the subway one evening when she started to sing an opera classic. Her melodious voice captured the attention of a nearby LAPD police officer and he asked if he could record her performance.

At first, Emily was a bit shy but she eventually allowed the officer to video her Puccini song. Later, the police officer posted the video on the department’s social media and the views started to climb.

The officer wrote, “4 million people call LA home. 4 million stories. 4 million voices … sometimes you just have to stop and listen to one, to hear something beautiful.” It was a simple sentiment that so many others have felt too. Now, Emily finds herself at the center of a viral phenomenon. She shared with the Los Angeles Times how a series of medical struggles and unstable employment led to her eviction.

Now, this homeless woman spends her nights on the subway and her days walking down the streets. But all that is about to change thanks to this one special serenade. Once her identity was discovered, people from all over reached out to help Emily. She’s already booked a singing gig and others are helping to provide shelter and basic necessities for the inspiring woman.

It’s a whirlwind of emotion but Emily is thankful for every moment. “I want to thank that police officer who did that video, and I wanted to thank God that he inspired me to do that.”

https://www.godtube.com/watch/?v=1EMC11NU

Turkish Scientist Sentenced to Prison for Publishing Paper Linking Pollution to Cancer

Child playing against backdrop of pollution

If you don’t think science is perverted to suit political and corporate agendas, read this! What scientist in Turkey would do unbiased research that concluded different from the “accepted line”. He (or she) would be a very brave person!

A Turkish food engineer, columnist and human rights advocate was sentenced to 15 months in prison last week for publishing an environmental paper that linked pollution to a high incidence of cancer in Western Turkey, according to Science Magazine.

The court in Istanbul found that Bülent ??k, former deputy director of the Food Safety and Agricultural Research Center at Akdeniz University, had disclosed classified information when he published the results of his study in a Turkish newspaper in April 2018. Amnesty International described the sentenced as “a travesty of justice,” as Agence-France Presse reported and Phys.org published.

“Bülent ??k fulfilled his duty as a citizen and a scientist and he used his right to freedom of expression,” his lawyer, Can Atalay, said in his closing statement, as Science reported.

??k carried out his study with several other scientists from 2011 to 2015 to test whether soil toxicity, water pollution and food had a link to the high rates of cancer in Western Turkey.

The study, which was commissioned by Turkey’s Ministry of Health, found dangerous levels of pesticides and heavy metals in various food and water samples from several provinces in western Turkey. Water in a few residential areas also tested positive for unsafe levels of lead, aluminum, chrome and arsenic pollution, according to Science.

??k published his findings in the newspaper Cumhuriyet after three years of lobbying the government to take action, but realizing his pleas were falling on deaf ears.

The study “clearly revealed the extent to which water resources were contaminated by toxic materials,” said ??k to reporters after the verdict, as AFP reported. “The court ruling shows that the results of a study that directly concerns public health can be hidden. This is unacceptable.”

??k was unapologetic about his actions, even though offering an apology would have allowed him to avoid jail time.

“[H]iding data obtained from research prevents us from having sound discussions about the solutions,” ??k said in a statement to the court provided to Science by his lawyer. “In my articles, I aimed to inform the public about this public health study, which was kept secret, and prompt the public authorities who should solve the problems to take action.”

Environmental groups have pointed out that Turkey has put economic growth ahead of safety as it has ignored environmental regulations during a boom in industrial growth, as AFP reported.

https://www.ecowatch.com/turkey-scientist-pollution-cancer-2640818406.html

Puberty Blocking Drug Used on “Trans” Kids Linked to Thousands of Deaths

Puberty Blockers

“Between 2012 and June 30 of this year, the FDA documented over 40,764 adverse reactions suffered by patients who took leuprolide acetate (Lupron), which is used as a hormone blocker. More than 25,500 reactions logged from 2014-2019 were considered ‘serious,’ including 6,370 deaths.”

https://www.thenewamerican.com/usnews/health-care/item/33542-puberty-blocking-drug-used-on-trans-kids-linked-to-thousands-of-deaths

Gene-Editing Unintentionally Adds Bovine DNA, Goat DNA, and Bacterial DNA, Mouse Researchers Find

Goat and kids

by Jonathan Latham October 2, 2019

Photograph Source: Jason Pratt from Pittsburgh, PA – CC BY 2.0

Summary:

  1. The new findings are very simple: cutting DNA inside cells, regardless of the precise type of gene editing, predisposes genomes to acquire unwanted DNA. The unwanted DNA may come from inside the edited cell, or it may come from the culture medium, or it may come from any biological material added to the culture medium, whether accidentally or on purpose. Therefore, it is not hard to imagine, for instance, gene-edited animals becoming the breeding stock that leads to the development or spread of novel or unwelcome viruses or mycoplasmas.
  2. The industry, and not just Recombinetics, is not showing much interest in self-examination. Far greater even than the GMO industry before it, there is a cowboy zeitgeist: blow off problems and rush to market. Thus most gene-editing companies are reluctant to share information and consequently very little is known about how, in practice, many of these companies derive their ‘gene-edited’ products.

Tom’s conclusion: As has been repeatedly shown elsewhere, man’s current state of technology and ethic level is inadequate to ensure the quality of the tasks and products and his ultimate survival!

The gene-editing of DNA inside living cells is considered by many to be the preeminent technological breakthrough of the new millennium. Researchers in medicine and agriculture have rapidly adopted it as a technique for discovering cell and organism functions. But its commercial prospects are much more complicated.

Gene-editing has many potential uses. These include altering cells to treat human disease, altering crops and livestock for breeding and agriculture. Furthermore, in a move that has been widely criticised, Chinese researcher He Jiankui claims to have edited human babies to resist HIV by altering a gene called CCR5.

For most commercial applications gene-editing’s appeal is simplicity and precision: it alters genomes at precise sites and without inserting foreign DNA. This is why, in popular articles, gene-editing is often referred to as ‘tweaking’.

The tweaking narrative, however, is an assumption and not an established fact. And it recently suffered a large dent. In late July researchers from the US Food and Drug Administration (FDA) analysed the whole genomes of two calves originally born in 2016. The calves were edited by the biotech startup Recombinetics using a gene-editing method called TALENS (Norris et al., 2019). The two Recombinetics animals had become biotech celebrities for having a genetic change that removed their horns. Cattle without horns are known as ‘polled’. The calves are well-known because Recombinetics has insisted that its two edited animals were extremely precisely altered to possess only the polled trait.

However, what the FDA researchers found was not precision. Each of Recombinetics’ calves possessed two antibiotic resistance genes, along with other segments of superfluous bacterial DNA. Thus, apparently unbeknownst to Recombinetics, adjacent to its edited site were 4,000 base pairs of DNA that originated from the plasmid vector used to introduce the DNA required for the hornless trait.

The FDA finding has attracted some media attention; mainly focussed on the incompetence of Recombinetics. The startup failed to find (or perhaps look for) DNA it had itself added as part of the editing process. Following the FDA findings, Brazil terminated a breeding program begun with the Recombinetics animals.

But FDA’s findings are potentially trivial besides another recent discovery about gene-editing: that foreign DNA from surprising sources can routinely find its way into the genome of edited animals. This genetic material is not DNA that was put there on purpose, but rather, is a contaminant of standard editing procedures.

These findings have not been reported in the scientific or popular media. But they are of great consequence from a biosafety perspective and therefore for the commercial and regulatory landscape of gene-editing. They imply, at the very least, the need for strong measures to prevent contamination by stray DNA, along with thorough scrutiny of gene-edited cells and gene-edited organisms. And, as the Recombinetics case suggests, these are needs that developers themselves may not meet.
Understanding sources of stray DNA

As far back as 2010 researchers working with human cells showed that a form of gene-editing called Zinc Finger Nuclease (ZFN) could result in the insertion of foreign DNA at the editing target site (Olsen et al., 2010). The origin of this foreign DNA, as with Recombinetics’ calves, was the plasmid vector used in the editing process.

Understanding the presence of plasmid vectors requires an appreciation of the basics of gene-editing, which, confusingly, are considerably distinct from what the word ‘editing’ means in ordinary English.

Ultimately, all DNA ‘editing’ is really the cutting of DNA by enzymes, called nucleases, that are supposed to act only at chosen sites in the genome of a living cell. This cut creates a double-stranded break that severs (and therefore severely damages) a chromosome. The enzymes most commonly used by researchers for this cutting are the Fok I enzyme (for TALENS type editing), Cas9 (for CRISPR), or Zinc Finger Nucleases (for ZFN).

Subsequent to this cutting event the cell effects a repair. In practice, this DNA repair is usually inaccurate because the natural repair mechanism in most cells is somewhat random. The result is called the ‘edit’. Researchers typically must select from many ‘edits’ to obtain the one they desire.

Like virtually all enzymes these nucleases are proteins. And like most proteins they are somewhat tricky to produce and relatively unstable once made. Typically, therefore, rather than produce the DNA cutting enzymes directly, researchers introduce vector plasmids into target cells. These vector plasmids are circular DNA molecules that code for the desired enzyme(s). (Vector plasmid DNA may also code for the guide RNA that CRISPR editing techniques require). What this means, in practice, is that TALENS, Cas9 and the other cutting enzymes end up being produced by the target cell itself.

Introducing DNA rather than proteins is thus much easier, research-wise, but it has a downside: non-host (i.e. transgenic) DNA must be introduced into the cell that is to be edited and this DNA may end up in the genome.

Plasmid vectors are not simple. As well as specifying the nucleases, the vector plasmid used by Recombinetics contained antibiotic resistance genes, plus the lac Z gene, plus promoter and termination sequences for each of them, plus two bacterial origins of replication. Each of these DNA components comes from widely diverse microbes.

As Olsen et al. and the FDA showed, using both TALENS and ZFN types of DNA cutters can result in plasmid vector integration at the target site. In 2015 Japanese researchers showed that DNA edits made to mouse zygotes using the CRISPR method of gene editing are also vulnerable to unintended insertion of non-host DNA (Ono et al., 2015).

Since then, similar integrations of foreign DNA at the target site have been observed in many species: fruitflies (Drosophila melanogaster), medaka fish (Oryzias latipes), mice, yeast, Aspergillus (a fungus), the nematode C. elegans, Daphnia magna, and various plants (e.g. Jacobs et al., 2015; Li et al., 2015; Gutierrez-Triana et al., 2018).
Other sources of stray DNA

The vector plasmids themselves are not the only source of potential foreign DNA contamination in standard gene-editing methodologies.

Earlier this year the same Japanese group showed that DNA from the E. coligenome can integrate in the target organisms’ genome (Ono et al. 2019). Acquisition of E. coli DNA was found to be quite frequent. Insertion of long unintended DNA sequences occurred at 4% of the total number of edited sites and 21% of these were of DNA from the E. coli genome. The source of the E. coli DNA was traced back to the E. coli cells that were used to produce the vector plasmid. The vector plasmid, which is DNA, was contaminated with E. coli genome DNA. Importantly, the Japanese researchers were using standard methods of vector plasmid preparation.

Even more intriguing was the finding, in the same paper, that edited mouse genomes can acquire bovine DNA or goat DNA (Ono et al., 2019). This was traced to the use, in standard culture medium for mouse cells, of foetal calf serum; that is, body fluids usually extracted from cows. This serum contains DNA from whichever animal species it happened to have been extracted from, hence the insertion in some experiments of goat DNA (which occurred when goat serum was used instead of calf serum).

Even more worrisome, amongst the DNA sequences inserted into the mouse genome were bovine and goat retrotransposons (jumping genes) and mouse retrovirus DNA (HIV is a retrovirus). Thus gene-editing is a potential mechanism for horizontal gene transfer of unwanted pathogens, including, but not limited to, viruses.

Other potential sources of unwanted DNA also exist in cell cultures used for gene editing. In 2004 researchers observed that when cells from a hepatoma cell line were caused to have DNA breaks, some of these breaks were filled by hepatitis B virus sequences (Bill and Summers, 2004). In other words, pathogens contaminating the foetal serum, such as DNA viruses, should also be a source of concern.

Furthermore, the insertion of superfluous DNA from other species is likely not restricted to the intended target site. As is becoming appreciated, gene-editing enzymes can act at unwanted locations in the genome (e.g. Kosicki et al., 2018). Accidentally introduced DNA can also end up at such sites. This has been shown for human cells and also plants using CRISPR (Kim and Kim 2014; Li et al., 2017; Jacobs et al., 2015). There is every reason to suppose that the more exotic DNAs mentioned above can integrate there as well, but this has not been specifically tested for.
Implications of superfluous DNA in edited cells

In summary, the new findings are very simple: cutting DNA inside cells, regardless of the precise type of gene editing, predisposes genomes to acquire unwanted DNA. The unwanted DNA may come from inside the edited cell, or it may come from the culture medium, or it may come from any biological material added to the culture medium, whether accidentally or on purpose. Therefore, it is not hard to imagine, for instance, gene-edited animals becoming the breeding stock that leads to the development or spread of novel or unwelcome viruses or mycoplasmas.

Stuart Newman of New York Medical College is a cell biologist, a founding member of the Council for Responsible Genetics, and Editor-In-Chief of the journal Biological Theory. According to him, the addition of DNA originating from cell culture “is something that has not been broached in the discourse around safety of CRISPR and other gene modification techniques.”

In the case of gene-editing intended to generate altered living organisms, cell culture media “contain genes that could cause developmental problems if reincorporated by CRISPR/Cas9 into the zygote genome in extra numbers and uncontrolled chromosomal sites.” says Newman.

“I have little doubt E. coli DNA has been inadvertently incorporated into many CRISPR targets, and it is likely to cause problems, as it has in the horned cattle.”

Similar concerns apply to human applications. The incorporation of DNA from other species has not publicly been raised in connection with the gene-edited human babies of researcher He Jiankui. Clearly, it should be. From what cell types, for example, did He Jiankui purify the proteins he presumably used to edit the CCR5 gene? Rabbit cells? Insect cells? Those, at least, are the standard methods.

The second important conclusion, and what the Recombinetics case exemplifies, is that researchers are often not looking for stray DNA. If they were to look, many more examples would likely be reported. We can conclude this because the research cited above used standard methods of gene-editing. The only untypical aspect was the extra effort put towards detecting superfluous DNA.
Gene-editing versus GMOs

What these recent findings also highlight is a more general, but little-discussed, aspect of gene-editing. Although the goals of gene-editors and genetic engineers are assumed to be very different, their standard methods are, in practice, virtually indistinguishable.

Consider crop plants, which are where much of the immediate commercial interest in gene-editing resides. To edit plants, DNA, in the form of vector plasmid, is introduced into plant cells. In contrast to methods of animal gene-editing, this vector plasmid is necessary (and not optional) since proteins cannot penetrate plant cell walls. This vector plasmid must access the cell interior, which requires either a gene gun or infection with the DNA-transferring bacterium Agrobacterium tumefaciens. Lastly, in-vitro cell culture is used to regenerate the edited cells into whole plants.

Gene guns, tissue culture, and A. tumefaciens are all standard genetic engineering methods for crops. They also all create mutations. That is, they damage DNA. Depending on the specifics of the method used, such as the length of time in tissue culture, the collective result can be ten thousand mutations per genome (Wilson et al., 2006; Latham et al., 2006). For gene-editing of crops this means that one on-target mutation may be dwarfed by thousands of off-target ones.

The other necessary comparison with GMOs is their track record of being found, long after commercialisation, to have unintended foreign DNA present in their genomes. Cornell’s virus-resistant papaya, released in Hawai’i, turned out to contain at least five (and possibly six) separate fragments of transgenic DNA. Cornell had previously told regulators its papaya contained two transgenes (Ming et al., 2008). Monsanto’s Roundup Ready Soybean, by then grown on 96% of US soybean acres, was found by independent researchers to have substantially more foreign DNA than Monsanto had claimed (Windels et al., 2001).

So, if one only listened to the rhetoric contrasting ‘precise’ ‘tweaks’ of gene-editing with ‘messy’, ‘random’ genetic engineering one would hardly suspect that, when it comes to plants, and often to animals as well, there is little difference between the reality of gene-editing and that of genetic engineering.
Are there solutions to the presence of superfluous DNA?

Solutions to the presence of superfluous DNA (at or distant from the editing site) come in two basic forms: prevention, or detection followed by removal.

An obvious preventive step is to avoid the use of vector plasmids and undefined culture media (undefined media are those containing fluids or extracts from living organisms). Another is to explicitly breed (backcross) gene-edited animals and plants to remove superfluous DNAs. A third is to sequence their whole genome, compare it to the parent genome, and select only unaltered lines, if they can be found (Ahmad et al., 2019).

However, these remedies are effortful. They are time-consuming and costly, or not yet fully developed, or only available for some species. These are also solutions that nullify the advantages of speed and ease that are often the stated reasons for editing in the first place.

The requirements for expertise and effort do much to explain the second major problem, which is that the industry, and not just Recombinetics, is not showing much interest in self-examination. Far greater even than the GMO industry before it, there is a cowboy zeitgeist: blow off problems and rush to market. Thus most gene-editing companies are reluctant to share information and consequently very little is known about how, in practice, many of these companies derive their ‘gene-edited’ products.

Many countries are at present formulating regulations that will go a long way to determining who benefits and who loses from any potential benefits that gene-editing may have. But in any event, these results provide a compelling case for active government oversight.

It is not just regulators who need to step up, however. Investors, insurers, journalists, everyone, in fact, should be asking far more questions of the scientists and companies active in gene-editing. Otherwise, boom is likely to stray into bane.
References

Ahmad, Niaz Mehboob–ur Rahman, Zahid Mukhtar, Yusuf Zafar, Baohong Zhang (2019) A critical look on CRISPR–based genome editing in plants. J. Cellular Physiology.

Bill, Colin A. and Jesse Summers (2004) Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. PNAS: 101 (30) 11135-11140.

Gutierrez-Triana, Jose Arturo, Tinatini Tavhelidse, Thomas Thumberger , Isabelle Thomas, Beate Wittbrodt, Tanja Kellner, Kerim Anlas, Erika Tsingos, Joachim Wittbrodt (2018) Efficient single-copy HDR by 5’ modified long dsDNA donors. eLife 2018;7:e39468.

Thomas B Jacobs, Peter R LaFayette, Robert J Schmitz & Wayne A Parrott (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology 15: 16.

Kim, J. & Jin-Soo Kim (2016) Bypassing GMO regulations with CRISPR gene editing. Nature Biotechnology 34: 1014-1015.

Kosicki, M , K. Tomberg and A. Bradley (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology 36: 765–771.

Norris, Alexis. L., Stella S. Lee, Kevin J. Greenlees, Daniel A. Tadesse, Mayumi F. Miller, Heather Lombardi (2019) Template plasmid integration in germline genome-edited cattle. doi: https://doi.org/10.1101/715482

Olsen, P.A., Gelazauskaite, M., Randol, M. & Krauss, S. (2010) Analysis of illegitimate genomic integration mediated by zinc-finger nucleases: implications for specificity of targeted gene correction. BMC Mol Biol 11, 35.

Latham, Jonathan R., Allison K. Wilson and Ricarda A. Steinbrecher (2006) The Mutational Consequences of Plant Transformation. The Journal of Biomedicine and Biotechnology (2006) 7 pages doi:10.1155/JBB/2006/25376

Li, Zhongsen, Zhan-Bin Liu, Aiqiu Xing, Bryan P. Moon, Jessica P. Koellhoffer, Lingxia Huang, R. Timothy Ward, Elizabeth Clifton, S. Carl Falco, A. Mark Cigan (2015) Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiol. 169: 960–970.

Li, Rong Sheng Quan, Xiaofang Yan, Sukumar Biswas, Dabing Zhang, Jianxin Shi (2017) Molecular characterization of genetically-modified crops: Challenges and strategies. Biotechnology Advances 35:s 302-309.

Ming, R., S Hou, Y Feng, Q Yu, A Dionne-Laporte (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452: 991–996.

Windels, Pieter, Isabel Taverniers, Ann Depicker, Erik Van Bockstaele and Marc De Loose (2001) Characterisation of the Roundup Ready soybean insert. Eur. Food Res. Technol. 213:107–11.

Ono, Ryuichi, Masayuki Ishii, Yoshitaka Fujihara, Moe Kitazawa, Takako Usami, Tomoko Kaneko-Ishino, Jun Kanno, Masahito Ikawa & Fumitoshi Ishino (2015) Double strand break repair by capture of retrotransposon sequenc es and reverse-transcribed spliced mRNA sequences in mouse zygotes. Scientific Reports 5: 12281.

Ryuichi Ono, Yukuto Yasuhiko, Ken-ichi Aisaki, Satoshi Kitajima, Jun Kanno & Yoko Hirabayashi (2019) Exosome-mediated horizontal gene transfer occurs in double-strand break repair during genome editing. Communications Biology 2: 57 https://www.nature.com/articles/s42003-019-0300-2.pdf?origin=ppub

Wilson, Allison K., Jonathan R. Latham, and Ricarda A. Steinbrecher (2006) Transformation-induced mutations in transgenic plants: analysis and biosafety implications. Biotechnology and Genetic Engineering Reviews 23.1 : 209-238.

Jonathan Latham edits Independent Science News.